LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

B.Sc.DEGREE EXAMINATION – **STATISTICS**

FOURTH SEMESTER - APRIL 2019

ST 4503– ESTIMATION THEORY

Date: 11-04-2019 Time: 01:00-04:00

Answer all the questions:

Dept. No.

- 1. Define unbiased estimator with an examples.
- 2. State the invariance property of consistent estimator.
- 3. Define UMVUE.
- 4. Define completeness.
- 5. State any two methods of estimation.
- 6. Write the normal equation for estimating the unknown parameter by the method of least squares.

Part –A

- 7. Define posterior distribution.
- 8. Define Bayes estimator.
- 9. Define confidence interval.
- 10. What is confidence coefficient?

Part –B

Answer any FIVE questions

- 11. State and prove Cramer Rao Inequality.
- 12. State and prove factorization theorem on sufficient statistic.
- 13. Describe the methods of minimum Chi square.

14. Let X_1 , X_2 , ..., X_n denote a random sample from the Bernoulli density $f\left(\frac{x}{a}\right) = \sqrt[n]{(1 - x)^{1-x}}$

for x = 0, 1. Assume that prior distribution is uniformly distributed over the interval (0,1). Find the posterior Bayes estimator of θ .

- 15. Determine $100(1 \alpha)\%$ confidence interval for mean of normal distribution when S.D is unknown.
- 16. Let $X_1, X_2, ..., X_n$ be a random sample from U(0, ...) population. Obtain MVUE for θ .
- 17. Obtain the MVB estimator for μ in normal population $N(\mu, \sigma^2)$, where σ^2 is known.

18. List the properties of M.L.E.

Answer any TWO questions

Part –C

19. (a). State and prove the sufficient conditions for consistency.

(b). Obtain the consistent estimator of θ in the case of Poisson P(θ). Also obtain the consistent estimator of $e^{-\theta}$.

- 20. (a). $X_1, X_2, ..., X_n$ be a random sample from normal distribution. Find the sufficient statistic for mean and variance.
 - (b). State and prove Rao Blackwell theorem.

21. (a). Find the MLE for the parameter μ of a normal distribution on the basis of a sample of size n, σ^2 is known. Find also its variance.

- (b). Derive the confidence interval for variance when μ is unknown in the case of $N(\mu, \sigma^2)$.
- 22. (a). Describe the method of moments.

(b). $X_1, X_2, ..., X_n$ is a random sample from a normal population $N(\mu, 1)$. Find the unbiased estimator of $\gamma^2 + 1$.

(10x2=20)

Max.: 100 Marks

(5*8=40)